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g-Analogues

subsets {si,...,sx} of [n] subspaces (si,...,sx) of E"
set cardinality: |S| vector space dimension: dim(S)
set complement: [n] —S orthogonal complement: St
binomial coefficients <Z> Gaussian coefficients {Z]
q
Hamming weight of F4-dimension of
(Viy.es V) €Fm (Vi Vin) € Fim
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g-Analogues in Coding Theory

Block codes - subspaces of Fg  —  Matrix codes - subspaces of Fg*™
Reed-Solomon Codes — Delsarte-Gabidulin Codes
Hamming metric — Rank metric
dr(x,y) = [{i: xi # yi}| k(X —Y)
Row space of a matrix — Slice space of a 3-tensor
MDS codes — MRD codes
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g-Analogues in Matroid Theory

Boolean lattice @~ — Subspace Lattice
(25,u,n) (Z(E),+n)
u(0,x) = (_1)|x| un(0,U) = (_1)dim(U)q(dlm2(U))
Matroid — g-Matroid
Polymatroid — g-Polymatroid
2
fro0,0% <10,091% = [,
{0y to1y <lo% <1y Z0 1>
igY do0y
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Matroids
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Matroids

@ Matroids are objects that generalize concepts in graph theory and linear algebra.
@ Graphs: circuits, cycles, dual, contraction, deletion
o Linear algebra: independence, bases, flats, closure, rank

@ Applications: information theory, secret sharing, distributed storage, coding theory,
combinatorial optimization

@ A matroid can be characterized as finite geometric lattice (its lattice of flats).

@ In fact a matroid can be equivalently determined by its flats, independent sets,
bases, hyperplanes, circuits, closure function, rank function etc.

@ These equivalent descriptions of a matroid are called cryptomorphisms.

@ Have a lot of different cryptomorphisms can be quite useful for defining and
characterizing matroids.
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Matroids and Rank Functions

Definition
A matroid is a pair (E,r) satisfying the following.
o E is a finite set; 2F is the lattice of subsets of E

o r:2F 5Ny is a rank function, s.t. for all A,B € E:
(r1) 0< H(A)< ||
(r2) If AC B then r(A) < r(B).
(r3) r(AUB)+r(ANB) < r(A)+r(B) (semimodularity).
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Matroids and Rank Functions

Definition
A matroid is a pair (E,r) satisfying the following.
o E is a finite set; 2F is the lattice of subsets of E

o r:2F 5Ny is a rank function, s.t. for all A,B € E:
(r1) 0<r(A) < ||
(r2) If AC B then r(A) < r(B).
(r3) r(AUB)+r(ANB) < r(A)+r(B) (semimodularity).

Example

Let k be a positive integer, k < n. Uy , is the uniform matroid, with rank function:

U if |U| <k
Y O
ko if U] > k.
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Matroids and Rank Functions

Definition
A matroid is a pair (E,r) satisfying the following.
o E is a finite set; 2F is the lattice of subsets of E

o r:2F 5Ny is a rank function, s.t. for all A,B € E:
(r1) 0<r(A) < ||
(r2) If AC B then r(A) < r(B).
(r3) r(AUB)+r(ANB) < r(A)+r(B) (semimodularity).

Example

Let k be a positive integer, k < n. Uy , is the uniform matroid, with rank function:
ul if|U| <k,
A TE
k if [U] > k.

(r3) If |JAUB| < k then r(AUB)+r(ANB) =|AUB|+ |ANB| = |A|+|B| = r(A) + r(B).
If |A| > k then r(AUB)+r(ANB)=k+r(ANB) < k+r(B) = r(A)+r(B).
Etc
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Matroids

Definition
A matroid is a pair (E,r) satisfying
o E is a finite set; 2F is the lattice of subsets of E

o r:2F Ny is a rank function, s.t. for all A,B € E:
(r1) 0<r(A) <A

(r2) If AC B then r(A) <r(B).

(r3) r(AUB)+r(ANB) < r(A)+r(B) (semimodularity).

Example

10 2 1 0

Let E={1,...,5}. Let A=
1 2 1 2

2x5
]e]Ff.

Define r(S) = dim({(col(A,s):s € S)).
Each singleton has rank 1. r({2,5}) = r({3,4}) =1, r(S) =2 for all other subsets.
We say that {2,5} and {3,4} are dependent sets.
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Flats, Circuits & Independent Spaces of a Matroid

Definition
Let M = (E,r) be a matroid. Let AC E. A is called:
Q aflatif r(AU{x})>r(A) x<E,x£A,
@ independent if r(A) = |A],
© dependent if it is not independent,
Q a circuit if it is dependent and every proper subset of A is independent.
@ The closure of A is cl(A) :={x € E: r(AU{x}) =r(A)}.
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Flats, Circuits & Independent Spaces of a Matroid

Definition
Let M = (E,r) be a matroid. Let AC E. A is called:
Q aflatif r(AU{x})>r(A) x<E,x£A,
@ independent if r(A) = |A],
© dependent if it is not independent,
Q a circuit if it is dependent and every proper subset of A is independent.
@ The closure of A is cl(A) :={x € E: r(AU{x}) =r(A)}.

Example
Let k be a positive integer, k < n. Uy , is the uniform matroid, with rank function:

Ul if|U| <k
r(U):: ‘ | ! ‘ |7 ’
ko if |U| > k.

@ A is independent if |A| < k.
e Ais a circuit if |A| = k+1.
o Aisaflatif |[A|<k—1lorif A=E.
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Axiom Systems

There are separate axiom systems that equivalently defines a matroid.
@ independence (i1)-(i3),

flats (f1)-(f3),

circuits (c1)-(c3),

closure (cl1)-(cl4),

e Etc

(Independence Axioms)

Let .# C2E. .7 is a collection of independent sets if it satisfies the following.

(i1) 0e 7.

(i2) IfICJand Je ¥ = | € .7 (decreasing).

(i3) Ifl,J€ 7 and |l| < |J| then 3x € J s.t {x}Ul € .# (augmentation).

For example, if .# is a collection of independent spaces, then it defines a matroid (E,r)

whose set of independent sets is .#. Conversely, if (E,r) is a matroid, its set of
independent sets satisfies (i1) — (i3).
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Cryptomorphisms with Duality

, —{E > >
Independence Dependence Circuits
A < - A <+—{upP—— A

v v v
Spanning Non-spanning Hyperplanes
< <
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g-Matroids
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Matroids — g-Matroids

Definition
A matroid is a pair (E,r) satisfying
o E is a finite set; 2F is the lattice of subsets of E

o r:2F 5 Ny is a rank function, s.t. for all A,B € E:
(r1) 0<r(A) <AL
(r2) If AC B then r(A) < r(B).
(r3) r(AUB)+r(ANB) < r(A)+r(B) (semimodularity).
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Matroids — g-Matroids

Definition
A matroid is a pair (E,r) satisfying
o E is a finite set; 2F is the lattice of subsets of E
o r:2F 5 Ny is a rank function, s.t. for all A,B € E:
(r1) 0<r(A)<|A|
(r2) If AC B then r(A) < r(B).
(r3) r(AUB)+r(ANB) < r(A)+r(B) (semimodularity).

Definition
A g-matroid is a pair (E,r) satisfying
o E is a finite dim'l vector space; .Z(E) is the lattice of subspaces of E
o r: Z(E) — Ny is a rank function, s.t. for all A,B < E:
(R1) 0<r(A) <dimA.
(R2) If A< B then r(A) < r(B).
(R3) r(A+B)+r(ANB) < r(A)+ r(B) (semimodularity).
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Representable g-Matroids

Every Fgm-linear rank metric code gives a gq-matroid. [Jurrius, Pellikaan, 2018]

Let E = Fg and let G be a k x n matrix of rank k over Fgm.
Let AC E and Y a matrix whose columns span A.

G Y GY

Then r(A) =1k(GY) satisfies the axioms (R1), (R2), (R3).
This is a representable g-matroid.

Matrix codes for the rank metric give g-polymatroids.
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Flats, Circuits, Closure & Independent Spaces of a g-Matroid

Definition
Let M = (E,r) be a g-matroid. Let A<E. Ais called:
Q aflatif r(A+x)>r(A) x<E,x LA,
@ independent if r(A) =dimA,
© dependent if it is not independent,
Q a circuit if it is dependent and every proper subspace of A is independent.
@ The closure of A is cl(A) :=max{F < E: A< F,r(A+F)=r(A)}.
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Flats, Circuits, Closure & Independent Spaces of a g-Matroid

Definition
Let M = (E,r) be a g-matroid. Let A<E. Ais called:
Q aflatif r(A+x)>r(A) x<E,x LA,
@ independent if r(A) =dimA,
© dependent if it is not independent,
Q a circuit if it is dependent and every proper subspace of A is independent.
@ The closure of A is cl(A) :=max{F < E: A< F,r(A+F)=r(A)}.

Example
Let k be a positive integer, k < n. Uy , is the uniform g-matroid, with rank function:

(V)= dim(U)  if dim(V) < k,
= k if dim(U) > k.

o Ais independent if dim(A) < k.
e Ais a circuit if dim(A) = k+1.
e Ais a flat if dim(A) < k—1orif A=E.
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Axioms
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Independence Axioms

Independent Sets Independent Spaces
(i1)0e 7. (11)0e 7.
(2)IflICJJe s = les. | (I2)IfI<J,Jed = |e.7.
(i3) Ifl,Je .7, |l| <|J| then (13) If 1,J € #, dim(I) < dim(J) then
Ixe N\l st {x}ule.s. Ix<JxLl, dim(x)=1st I+x€.7.
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Independence Axioms

Independent Sets

Independent Spaces

(i1)0e 7.
(2)IflICcJJe s = les.
(i3) IfI,J € .7, || < |J| then

Ix e\l st. {x}ule.s.

(l1)0e 7.

(12)IfI<JJe s = le /.

(13) If 1. J € .7, dim(l) < dim(J) then
Ix<J,xZl, dim(x)=1st |+x€.7.

(14) IFI <A, J<B,1,Je.7, max'lin A B

then A+ B has a max’l ind. subspace in |+ J.

g-Matroids and their Cryptomorphisms June 3, 2021

18/30



Independence Axioms

Independent Sets Independent Spaces
(i1)0e 7. (11)0e 7.
(2)IflICJJe s = les. | (I2)IfI<J,Jed = |e.7.
(i3) Ifl,Je .7, |l| <|J| then (13) If 1,J € #, dim(I) < dim(J) then

Ixe N\l st {x}ule.s. Ix<JxLl, dim(x)=1st I+x€.7.
(14) If1 <A, J<B, I,Je.#, max'l in A,B
then A+ B has a max’l ind. subspace in |+ J.

Define
r(A) := max{dim(/): I <A,/ € #} forall A<E.
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Independence Axioms

Independent Sets Independent Spaces
(i1)0e 7. (11)0e 7.
(2)IflICJJe s = les. | (I2)IfI<J,Jed = |e.7.
(i3) Ifl,Je .7, |l| <|J| then (13) If 1,J € #, dim(I) < dim(J) then

Ixe N\l st {x}ule.s. Ix<JxLl, dim(x)=1st I+x€.7.
(14) If1 <A, J<B, I,Je.#, max'l in A,B
then A+ B has a max’l ind. subspace in |+ J.

Define
r(A) := max{dim(/): I <A,/ € #} forall A<E.

If (11)-(13) hold but (14) does not, we can cook up examples violating submodularity.
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Independence Axioms

Independent Sets Independent Spaces
(i1)0e 7. (11)0e 7.
(2)IflICJJe s = les. | (I2)IfI<J,Jed = |e.7.
(i3) Ifl,Je .7, |l| <|J| then (13) If 1,J € #, dim(I) < dim(J) then

Ixe N\l st {x}ule.s. Ix<JxLl, dim(x)=1st I+x€.7.
(14) If1 <A, J<B, I,Je.#, max'l in A,B
then A+ B has a max’l ind. subspace in |+ J.

Define
r(A) := max{dim(/): I <A,/ € #} forall A<E.

If (11)-(13) hold but (14) does not, we can cook up examples violating submodularity.
Example
Let .7 := {0,(1100), (0011), (1111),(1100,0011)} C F4. .7 satisfies (I1)-(I3), fails (14).
Let A= (1100,0001), B = (1100,0010). So A+ B = (1100,0011,0010), AN B = (1100).
r(A+B)+r(ANB)=2+1% r(A)+r(B)=1+1.
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Independence Axioms

Independent Sets Independent Spaces
(i1)0e 7. (l1)0e 7.
(2)IfICJJed = les. | (12)IfI<J,Jed = |c 7.
(i3) IfI,J € .7, |l| <|J| then (13) If 1,J € .7, dim(I) < dim(J) then
Ixe Nl st {x}Ule.7. Ix<Jx£l, dim(x)=1st I+x€.7.
(14) If I <A, I € #, max'l in A, dim(x) =1

then A+ x has a max’'l ind. subspace in | + x.

Define
r(A) := max{dim(/): I <A,/ € F} forall A<E.

If (11)-(13) hold but (14) does not, we can cook up examples violating submodularity.
Example
Let .7 := {0,(1100), (0011), (1111),(1100,0011)} C F4. .7 satisfies (I1)-(I3), fails (14).
Let A= (1100,0001), B = (1100,0010). So A+ B = (1100,0011,0010), AN B = (1100).
r(A+B)+r(ANB)=3<£2=r(A)+r(B).
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A Cryptomorphism Between the Independence and Rank Axioms

Theorem (Jurrius, Pellikaan 2018)

Q Let .7 be a family of subspaces of E that satisfies the flat axioms (11)-(14).
Then (E,.#) determines a q-matroid (E,rs) whose set of independent spaces is .7 .

@ Let (E,r) be a g-matroid with independent spaces 7.
Then ., satisfies axioms (11)-(14).

Q@ ry=rand Iry.
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Independent Spaces in a Representable g-Matroid

Let G € IFZ?” have rank k. Let Y € Fg*". If Ry :=rowp, (Y) then r(Ry) :rk]qu(GYT).
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Independent Spaces in a Representable g-Matroid

Let G € anf” have rank k. Let Y € Fg*". If Ry :=rowp, (Y) then r(Ry) :rk]qu(GYT).
M[G] := (Fg,r) is the representable g-matroid determined by (the rowspace of) G.

G is the generator matrix of an Fgm-[n, k] code C and is the PCM of an Fgm-[n, n— k|
code C*.

Cl:{yngm :GyT =0}.
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Independent Spaces in a Representable g-Matroid

Let G € anf” have rank k. Let Y € Fg*". If Ry :=rowp, (Y) then r(Ry) :rk]pqm(GYT).
M[G] := (Fg,r) is the representable g-matroid determined by (the rowspace of) G.

G is the generator matrix of an Fgm-[n, k] code C and is the PCM of an Fgm-[n, n— k|
code C*.

-
Cl:{yEFgm :Gy' =0}

Let y € Fgm s.t. tk(y) :=rtkp, ((y1,...,¥n)) = r. Then y = zY some z € F¢n, tk(z) =r.

We say that y has support equal to Ry .

g-Matroids and their Cryptomorphisms June 3, 2021 21/30



Independent Spaces in a Representable g-Matroid

Let G € anf” have rank k. Let Y € Fg*". If Ry :=rowp, (Y) then r(Ry) :rk]pqm(GYT).
M[G] := (Fg,r) is the representable g-matroid determined by (the rowspace of) G.

G is the generator matrix of an Fgm-[n, k] code C and is the PCM of an Fgm-[n, n— k|
code C*.

ct={y €Fgm: GyT =0}.
Let y € Fgm s.t. tk(y) :=rtkp, ((y1,...,¥n)) = r. Then y = zY some z € F¢n, tk(z) =r.

We say that y has support equal to Ry .

So Gy' =05 GYTzT =0 = kg, (GYT) <r.
Conversely, rqum(GYT) <r= GYTvT =0some v,& GzT =0,z=vY.
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Independent Spaces in a Representable g-Matroid

Let G € anf” have rank k. Let Y € Fg*". If Ry :=rowp, (Y) then r(Ry) :rk]pqm(GYT).
M[G] := (Fg,r) is the representable g-matroid determined by (the rowspace of) G.

G is the generator matrix of an Fgm-[n, k] code C and is the PCM of an Fgm-[n, n— k|
code Ct.

-
Cl:{yEIFgm :Gy' =0}

Let y € Fgm s.t. tk(y) :=rtkp, ((y1,...,¥n)) = r. Then y = zY some z € F¢n, tk(z) =r.

We say that y has support equal to Ry .

So Gy' =05 GYTzT =0 = kg, (GYT) <r.
Conversely, rqum(GYT) <r= GYTvT =0some v,& GzT =0,z=vY.

The dependent spaces of M[G] are the supports of the members of cL.

A space is independent in M[G] iff it is not the support of an element of ct.
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Closure Axioms

cl:2f —0F Cl: Z(E) — Z(E)
(cl1) A C cl(A). (Cl1) A < cl(A).
(cl2) AC B = cl(A) Ccl(B). (CI2) A< B = cl(A) <cl(B).
(c13) c1(A) = cl(cl(A)). (CI3) cl(A) = cl(cl(A)).
(cl4) If y Ccl(A+x) and y Z cl(A) (Cl4) If y < cl(A+x) and y £ cl(A)
then x C cl(A+y). then x < cl(A+y).
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Closure Axioms

cl:2FE —2E Cl: Z(E) — Z(E)
(cl1) A C cl(A). (Cl1) A < cl(A).
(cl2) AC B = cl(A) Ccl(B). (CI2) A< B = cl(A) <cl(B).
(c13) c1(A) = cl(cl(A)). (CI3) cl(A) = cl(cl(A)).
(cl4) If y Ccl(A+x) and y Z cl(A) (Cl4) If y < cl(A+x) and y £ cl(A)
then x C cl(A+y). then x < cl(A+y).
Fo ={XCE:e¢cl(X—e)anyeec X} | Io:={X<E:CI(X)#ClA),A< X}
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Closure Axioms

cl:2FE —2E Cl: Z(E) — Z(E)
(cl1) A C cl(A). (Cl1) A<cl(A).
(cl2) AC B = cl(A) Ccl(B). (CI2) A< B = cl(A) <cl(B).
(c13) c1(A) = cl(cl(A)). (CI3) cl(A) = cl(cl(A)).
(cl4) If y Ccl(A+x) and y Z cl(A) (Cl4) If y < cl(A+x) and y £ cl(A)
then x C cl(A+y). then x < cl(A+y).
Fo ={XCE:e¢cl(X—e)anyeec X} | Io:={X<E:CI(X)#ClA),A< X}

Example
Let 1 < k < n. Define a map

A if dim(A) < k—1

Cl: FZ — ]Fg A
E  otherwise
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Closure Axioms

cl:2FE —2E Cl: Z(E) — Z(E)
(cl1) A C cl(A). (Cl1) A<cl(A).
(cl2) AC B = cl(A) Ccl(B). (CI2) A< B = cl(A) <cl(B).
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Example
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Closure Axioms

cl:2FE —2E Cl: Z(E) — Z(E)
(cl1) A C cl(A). (Cl1) A<cl(A).
(cl2) AC B = cl(A) Ccl(B). (CI2) A< B = cl(A) <cl(B).
(c13) c1(A) = cl(cl(A)). (CI3) cl(A) = cl(cl(A)).
(cl4) If y Ccl(A+x) and y Z cl(A) (Cl4) If y < cl(A+x) and y £ cl(A)
then x C cl(A+y). then x < cl(A+y).
Fo ={XCE:e¢cl(X—e)anyeec X} | Io:={X<E:CI(X)#ClA),A< X}

Example
Let 1 < k < n. Define a map

A if dim(A) < k—1

Cl: FZ — ]Fg A
E  otherwise

If dim(/) < k—1 then for J <[, CI(J)=J # I =CI(I), so | € .
If dim(/) = k then for J < I, CI(J) =1 # E = CI(l), so | € 7.
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Closure Axioms

cl:2FE —2E Cl: Z(E) — Z(E)
(cl1) A C cl(A). (Cl1) A<cl(A).
(cl2) AC B = cl(A) Ccl(B). (CI2) A< B = cl(A) <cl(B).
(c13) c1(A) = cl(cl(A)). (CI3) cl(A) = cl(cl(A)).
(cl4) If y Ccl(A+x) and y Z cl(A) (Cl4) If y < cl(A+x) and y £ cl(A)
then x C cl(A+y). then x < cl(A+y).
Fo ={XCE:e¢cl(X—e)anyeec X} | Io:={X<E:CI(X)#ClA),A< X}

Example
Let 1 < k < n. Define a map

A if dim(A) < k—1

Cl: IFZ — ]Fg A
E  otherwise

If dim(/) < k—1 then for J <[, CI(J)=J # I =CI(I), so | € .

If dim(/) = k then for J </, CI(J) =1 # E =CI(l), so | € H.

If dim(A) > k then there exists B < A, dim(B) = k, so CI(B) = E =CI(A) and A ¢ /.
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A Cryptomorphism Between the Independence and Closure Axioms

Theorem (B., Ceria, Jurrius, 2021)
Q LetCl: L(E) — Z(E) be a closure function. Then (E, %)) satisfies (11)-(14).

@ (E,Cl) determines a g-matroid (E,r) whose set of independent spaces is
Jo:={X < E:CI(X)#Cl(A),A< X}

and whose closure function satisfies Cl, = Cl.
Q Let (E,.7) satisfy (11)-(14). Define

rg: L(E)—Z:A— max{dim(/): /€ .7,| C A}.

Then (E,.#) determines a q-matroid (E,r) whose closure function is Cl = Cl, and
whose set of independent spaces is .7 .

SN TN

(E,C1) (E,r) (E,”)

N~ 7
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More g-Cryptomorphisms

Flat «——BCJ21 —— Closure Basis
BCIJS20 BCJ21 BCJ21 JP18
BCJ21
BCJ21 Rank «—JP18 — Indepe
BollenCrapoJ17
Open space J JP18
Bi-colourings
Hyperplane BCJ21 Circuit
g-Matroids and their Cryptomorphisms

Spanning

BCJ21

ndence < BCJ21 » Dependence

BCJ21 BCJ21

Non-spanning
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Circuit Axioms

Circuit (Sets)

Circuits (Spaces)

(c1)0¢%.
(c2) 1,6 e, G#C = G L G.
(C3) G, Ge?C, GG#C,xeGiNG

= 3G €¥ st. GC(GUG)—{x}.

(C1)0¢%.

(C2) G, Ge?,C# G = G LG
(C3) G, Ge?,C1# G,x<GNG
= 3G €F st. GG+ C,xL .
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Circuit Axioms

Circuit (Sets) Circuits (Spaces)

(c1)0¢%. (C1)0¢ 7.

(c2) C1,G e, C1£C = GLZC. | (C2) Cl,Ge¥,CL#C = G £ G
(63) G, Ge?C, GG#C,xeGiNG (C3) G, Ge?C, GL#C,x<GNG
= 3G €¥ st. GC(GUG)—{x}. — G eC st. <G+ CG,x L C.

In fact (C3) is too weak to define a g-matroid.
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Circuit Axioms

Circuit (Sets)

Circuits (Spaces)

(c1)0¢%.

(c2) G, G eC, C1#C = G ZG.
(C3) G, Ge?C, GG#C,xeGiNG
= 3G €¥ st. GC(GUG)—{x}.

(C1)0¢ %,
(C2) C,G 6%,C1 7& G = G ﬁ G.
(C3) 1, e, CL# Cx< NG

— G eC st. <G+ CG,x L C.

In fact (C3) is too weak to define a g-matroid.

Example

Let .# := {0, (1100), (0011),(1111),(1100,0011)} C F4.

% is the collection of minimal dependent spaces.

Therefore, % is the set of 1-dim’'l spaces not in .#.

Moreover, € satisfies (C1)-(C3).

As we saw before, (E,.#) does not define a g-matroid (it fails (14) and (R3)).
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Circuit Axioms

Circuit (Sets)

Circuits (Spaces)

(c1)0¢%.
(CZ) Cl, G e %, G 75 G = G g G.
(63) G, GeC, G+ C,xeGiNG

= G €€ st. (3C(GGUG)—{x}.

(C1)0¢@.
(C2) (1, e¥,G# G — G LG

(C3) 1, e, G# G, XS G+G=
codimp(X)=1 = IG €€ s.t. G3< X.

D
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Circuit Axioms

Circuit (Sets) Circuits (Spaces)

(c1)0¢%. (CLH0E%.

(62) C17C2 G%, G 75 G = G Z G. (C2) C17C2 6%7 G 75 G = G ﬁ G.
(C3) G, GeC, G+ C,xeGiNG (C3) G, GeC, GG#C, X< G+G=D
= G €€ st. GC(GGUG)—{x}. | codimp(X)=1 = G €F s.t. G3< X.

The new (C3) implies the old (C3). But the old (C3) doesn't include enough of the
codim 1 subspaces of C; + G,.
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Circuit Axioms

Circuit (Sets)

Circuits (Spaces)

(c1)0¢ 7.

(2) G, Ge?,G#C = G L.
(c3) 1, G e€,CL# Co,xe GLNG
— 3G €% st. GC(GUG)—{x}.

(C1)0¢%.

(C2) C17C2€(g7C175C2 - C1$C2.
(C3) (1, e?, CL#C, X< CG+CG=D
codimp(X)=1 = IG €% s.t. G3< X.

The new (C3) implies the old (C3). But the old (C3) doesn't include enough of the

codim 1 subspaces of C; + G,.

Example

Let .# := {0,(1100), (0011), (1111),(1100,0011)} C F3.

% is the collection of minimal dependent spaces.

Therefore, € is the set of 1-dim’l spaces not in .#.
Moreover, ¢ satisfies (C1), (C2) but fails the new (C3).
Let G = (1000), G, = (0111). Then D = (1111) has codim 1 in C; + Gy, but D € .4, so

the new (C3) fails.
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Duality

Matroid

g-Matroid

Complement
r*(A) :=|A|—=r(E)+r(E—A)

Orthogonal Complement

r*(A) := dim(A) — r(E) + r(A")

e ) iy G e
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Duality

Matroid

g-Matroid

Complement
r*(A) :=|A|—=r(E)+r(E—A)

Orthogonal Complement

r*(A) :=dim(A) — r(E) + r(Ah)

o Al:={x€E:(x,a)=0Vac A}, (-,-) is a bilinear form on E.

o Ac 7" & r(At) = r(E).

e M** =M.

e ) iy G e
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Duality

Matroid g-Matroid
Complement Orthogonal Complement

r*(A) :=|A| = r(E)+r(E—A) | r*(A) :=dim(A) - r(E)+r(AL)

o Al:={x€E:(x,a)=0Vac A}, (-,-) is a bilinear form on E.
o Ac 7" & r(At) = r(E).
o M* =M.

Example (Jurrius, Pellikaan, 2018)

If M = MI[G] for a k x n matrix G of rank k over Fgm then M* = M[H] for an (n—k) x n
matrix H of rank n— k over Fgm s.t. GHT =0.

The dependent spaces of M are the supports of elements in nullspace(G) = row(H).

r*(Ry) =1k(Y)—k+r(Ry) =tk(Y) — k+1k(GXT) =tk(HY'T).
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Contraction and Restriction

Matroid q-Matroid
Restriction to X C E Restriction to X < E
M|X = (X,r) M|X = (X,r)
Deletion of X C E Deletion of X < E
M\X := M|(E — X) M\X = M| X+

Contraction of X C E
M/X = (E—X,rM/X)
rM/X(A) =r(AUX)—r(X)

Contraction of X < E
M/X :=(E/X,rm/x)
rmyx(A/X) = r(A) —r(X)

(M/T) = (M"T)"

(M/T)" = M*|7.

(M/T)* = M*| 1. are lattice-equivalent.

The choice of bilinear forms used in duality gives different but equivalent matroids.
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g-Matroids Induced by g-Steiner Systems - Defining a Matroid by Flats

Theorem (B., Ceria, lonica, Jurrius, Sagikara, 2020)
Let . be a q-Steiner system with blocks 2. Define the family

ﬂ{BQSB:SQ%}.

© Z is the collection of flats of a q-perfect matroid design (E,r).
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g-Matroids Induced by g-Steiner Systems - Defining a Matroid by Flats

Theorem (B., Ceria, lonica, Jurrius, Sagikara, 2020)
Let . be a q-Steiner system with blocks 2. Define the family

ﬂ{BQSB:SQQ}.

© Z is the collection of flats of a q-perfect matroid design (E,r).

dim(A) if dim(A) <t,
Q r(A)=1q t if dim(A) > t and A is contained in a block of 2,
t+1 if dim(A) > t and A is not contained in a block of A.
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g-Matroids Induced by g-Steiner Systems - Defining a Matroid by Flats

Theorem (B., Ceria, lonica, Jurrius, Sagikara, 2020)
Let . be a q-Steiner system with blocks 2. Define the family

ﬂ{BQSB:SQQ}.

© Z is the collection of flats of a q-perfect matroid design (E,r).

dim(A) if dim(A) <t,
Q r(A)=1q t if dim(A) > t and A is contained in a block of 2,
t+1 if dim(A) > t and A is not contained in a block of A.

© | < E is independent if

dim(l) <t or
dim(/) =t+1 and | is not in a block of A.
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g-Matroids Induced by g-Steiner Systems - Defining a Matroid by Flats

Theorem (B., Ceria, lonica, Jurrius, Sagikara, 2020)
Let . be a q-Steiner system with blocks 2. Define the family

y{ﬂ B:SQ@}.

BeS

© Z is the collection of flats of a q-perfect matroid design (E,r).

dim(A) if dim(A) <t,
Q r(A)=1q t if dim(A) > t and A is contained in a block of 2,
t+1 if dim(A) > t and A is not contained in a block of A.

© | < E is independent if
dim(l) <t or
dim(/) =t+1 and | is not in a block of A.

©Q@ C<E isacircuit if
dimC=t+1 and C is contained in a block of % or
dim C = t+2 and all (t+ 1)-subspaces of C are contained in none of the blocks of A.
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Thank you!
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Thank you!

o Byrne, Ceria, Jurrius, ‘Constructions of New Cryptomorphisms,’ 2021
(arXiv:2104.01486).

@ Byrne, Ceria, lonica, Jurrius, ‘Weighted Subspace Designs from g-Polymatroids,’
2021 (arXiv:2104.12463).

@ Jurrius, Pellikaan, ‘Defining the g-analogue of a matroid,’ Electronic Journal of
Combinatorics, 25(3), 2018.
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